
SAT-Based Area Recovery in Structural Technology Mapping

Bruno Schmitt Alan Mishchenko Robert Brayton

Ecole Polytechnique Federale de Lausanne (EPFL) Department of EECS, UC Berkley

bruno.schmitt@epfl.ch {alanmi, brayton}@berkeley.edu

Abstract— This paper proposes a fast SAT-based algorithm
for recovering area applicable to an already technology mapped
circuit. The algorithm considers a sequence of relatively small
overlapping regions, called windows, in a mapped network and
tries to improve the current mapping of each window using a SAT
solver. Delay constraints are considered by interfacing the SAT
solver with a timer. Experimental results are given for bench-
marks that have been mapped already into 6-LUTs by a high-
effort area-only synthesis/mapping flow. The new mapper start-
ing from these results, many of which represented the best known
area results at the time, achieved an additional average area re-
duction of 3-4%, while for some benchmarks the area reduction
exceeded 10%. Runtime for any example was only a few seconds.

I. INTRODUCTION

Technology mapping expresses a Boolean network repre-

senting the functionality of a hardware design as a set of primi-

tives from a technology library. In mapping into FPGAs based

on lookup tables (LUT), the library is composed of K-input

LUTs, where K = 4 or K = 6 for most commercial FPGAs.

LUT-based mappers measure area in terms of LUT count,

and delay in terms of LUT level, defined as the largest number

of LUTs on any path from primary inputs to primary outputs.

Reducing area and delay of a LUT mapping is an important

goal achieved using heuristic structural mappers, such as [11],

followed by post-mapping Boolean re-synthesis, such as [12].

Previous SAT-based Boolean matching methods for technol-

ogy mapping, such as [7][15], are mainly functional; that is,

given a Boolean function, they synthesize a LUT structure. In

contrast, this paper proposes a structural SAT-based method for

reducing area of a given LUT mapping. The algorithm uses a

SAT solver to find minimum-area K-LUT covers of a sequence

of small multi-input and multi-output regions (windows) in an

initial K-LUT mapping. Because the optimization performed

is purely structural (it does not exploit the Boolean nature of

the network nor does it use don’t-cares [12][13]) it has fast run-

time, yet often results in improved area and delay.

The method can optimize area under delay-constraints, but

instead of encoding delay constraints in the conjuctive nor-

mal form (CNF), as in [9], the SAT solver is interfaced with

a dedicated timer capable of determining if a mapping, found

by the solver, has acceptable delay. A similar approach based

on decoupling of a SAT-based enumeration and an application-

specific evaluation has been used in [8].

Experiments show that the proposed engine gives sizeable

improvements for circuits already mapped by a high-effort

area-oriented synthesis and mapping flow. Although these im-

provements are counterintuitive, they may indicate that area-

recovery heuristics used in mainstream mappers do not perform

well for deep And-Inverter Graphs (AIG) with a homogenous

logic structure. It can be shown that in such AIGs, the area-

recovery heuristics used in state-of-the-art technology mappers

often make incorrect decisions when choosing one local map-

ping among many candidates, due to the lack of clear win-

ner among them. These mistakes accumulate during each run

of the mapper, resulting in a substantial area penalty unless

the area is further recovered by post-processing using methods

similar to the one proposed in this paper.

The rest of the paper is organized as follows. Section II

contains relevant background. Section III shows the high-level

view of the proposed SAT-based engine and describes its com-

ponents. Section IV contains experimental results, and Section

V concludes the paper.

II. BACKGROUND

A. Boolean Functions

Boolean variable x is a variable that takes one of the two

values from the domain B = {false, true}, or {0, 1}. A posi-
tive literal is the Boolean variable x and a negative literal is its

complement x. In this paper, function refers to a completely
specified Boolean function f(X) : Bn → B of n variables

X = {x1, x2, . . . , xn}. The support of f is the subset of vari-

ables that influence the output value of the function f . The

support size is denoted by |X|.

B. Boolean Networks

A Boolean network (or circuit) is a directed acyclic graph

(DAG) G = (V,E) with nodes V and edges E. Every node

is associated with a Boolean function and a Boolean variable,

called the output variable, representing the node’s output. The

existence of an outgoing edge from node n1 to node node n2

means that the variable representing the output of n1 is an input

to the function represented by n2. In this case, we say that n1

is a fan-in of n2, or that n2 is a fan-out of n1.

A node n might have zero or more fan-ins and zero or more

fan-outs. Primary inputs are nodes without fan-ins. Primary
outputs are a subset of nodes that connect the networks to the

environment. A transitive fan-in (fan-out) cone (TFI/TFO) of

a node is a subset of nodes of the network, that are reachable

through the fan-in (fan-out) edges of the node. The TFO sup-
port of a node is the set of primary inputs reachable through

the fan-outs of the node.

978-1-5090-0602-1/18/$31.00 ©2018 IEEE

6D-1

586

C. And-Inverter Graph (AIG)

An And-Inverter Graph (AIG) is a combinational Boolean

network composed of two-input AND gates and inverters.

An AIG for a Boolean network can be derived by factoring

the functions of the logic nodes found in the network. The

AND/OR gates in the factored forms are converted into two-

input ANDs and inverters using De Morgan’s law and added to

the AIG in a topological order.

A cut C of a node n is a subset of nodes, called leaves of

the cut, such that each path from a primary input to n passes

through at least one leaf. Node n is called the root of cut C.

The cut size is the number of its leaves. A trivial cut of a node

is the cut composed of the node itself. A cut is K-feasible if the

number of nodes in the cut does not exceed K. Cut enumera-

tion is used by a cut-based technology mapper, such as [11], to

compute cuts using dynamic programming, starting from pri-

mary inputs and ending at primary outputs.

D. LUT Mapping

A K-input lookup table (K-LUT) is a hardware device,

which can implement any Boolean function up to K inputs.

ABoolean network can be mapped into K-LUTs by a soft-

ware package called technology mapper. The mapper takes a

subject graph, which is a technology-independent representa-

tion of the network, such as an AIG, and returns a mapping,

which is a set of LUTs covering the subject graph. Each inter-

nal node of the subject graph is either used in the mapping (if

the mapping includes a LUT rooted in this node) or not used

in the mapping (otherwise). A mapping is valid if the internal

nodes driving the primary outputs of the network are used in

the mapping and, for each LUT of the mapping, its fan-ins are

used in the mapping, or are primary inputs.

In this work, we assume that the Boolean network is already

mapped using K-LUTs and the resulting mapping is valid. Fur-

thermore, we do not consider any technology-dependent infor-

mation associated with the LUTs, except their connectivity.

E. Boolean Satisfiability

A satisfiability problem (SAT) takes a propositional for-

mula representing a Boolean function and decides if the for-

mula is satisfiable or not. The formula is satisfiable (SAT) if

there is an assignment of variables that evaluates the formula

to 1. Otherwise, the formula is unsatisfiable (UNSAT). A soft-

ware program that solves SAT problems is called a SAT solver.

SAT solvers provide a satisfying assignment when the problem

is satisfiable.

Modern SAT solvers can accept a set of assumption, each

of which enforces a value to a variable. The process of deter-

mining the satisfiability of a problem under given assumptions,

is called incremental SAT solving [4].

F. Conjunctive Normal Form (CNF)

To represent a propositional formula in the SAT solver, im-

portant aspects of the problem are encoded using Boolean vari-

ables. The presence or absence of a given aspect is represented

by a positive or negative literal of a variable. A disjunction of

literals is called a clause. A conjunction of clauses is called

a conjunctive normal form (CNF). CNFs are processed by

CNF-based solvers, such as MiniSAT [4].

CNF is composed of clauses encoding different aspects of

the SAT problem. For example, some CNF clauses may encode

covering constraints, that is, requirements for each node that, if

a node is mapped, its fan-ins are mapped. Another important

constraint type present in many SAT problems, is introduced in

the next section.

G. Cardinality Constraints

Let X = {x1, x2, . . . , xn} be a fixed finite set of Boolean

variables of a propositional formula represented in CNF. A car-
dinality constraint states that, among the n Boolean variables

in X , m or less have value 1. Meaning that a satisfiying ass-

ingment for this propositional formula will have at most m true

variables.

A naive way to represent this constraint is to generate
n!

m!(n−m)! +
n!

(m−1)!(n−m+1)! + . . .+1 clauses, each ruling out

a specific subset of variables, of size m or less, that have value

1. For values appearing in practice, this can be prohibitive, e.g.

(n,m) = (64, 16) leads to more than 4.8 ∗ 1014 clauses.

Efficient CNF representation has been a topic of active

research for more than a decade. It has been shown [5]

that pseudo-Boolean constraints (a generalization of cardinal-

ity constraints) can be expressed efficiently by using sorting
neworks. The resulting CNFs lead to faster SAT because sort-

ing networks contain only ANDs and ORs. Other proposed

representations of cardinality use adders, boolean decision dia-

grams (BDDs), etc, contain XORs and MUXes.

Moreover, it has been shown [1] that exactly one half of the

clauses used to encode a cardinality constraint represented as

a sorting network do not have to be added to the SAT solver.

This new representation is called a cardinality network. For a

comprehensive background on this, we refer the reader to [1].

Finally, [3] shows that among the two equal-cost implemen-

tations of sorting networks, the one known as the pair-wise

sorting network [14] has better implicativity (generates more

implications) and therefore leads to substantially faster SAT

solving. Hence, our representation of cardinality constraints

uses cardinality networks derived from pair-wise sorting net-

works.

III. SAT BASED ENGINE

This section describes the components of the proposed SAT-

based structural re-mapping engine shown in Figure 1. The

input is an AIG mapped into K-input LUTs. The output is the

same AIG but with a different K-input LUT mapping assigned.

The new mapping is expected to have the same or better area

and delay, compared to the original mapping.

LUTs of the current mapping are considered in a topological

order, although a different order could be used. For each LUT,

a window is computed (Subsection A). The window contains

the given LUT together with other LUTs in its TFI and TFO.

The complete set of structural K-LUT covers of the window

is represented in CNF (Subsection B). The SAT solver takes

this CNF and looks for an improved mapping (Subsection C).

6D-1

587

Fig. 1. Overview of the proposed engine

If found, the current mapping is updated (Subsection D). Delay

constraints are handled as shown in Subsection E.

When computation for a given LUT is finished, the mapper

moves to the next LUT in the order. When all LUTs have been

considered or when a resource limit, such as a global timeout,

has been reached, the mapper outputs an improved LUT map-

ping.

A. Window Selection

A window is a small region of the subject graph. The size of

a window is the number of subject graph nodes it contains. A

window, computed for a LUT-mapped AIG, is represented as

a combination of LUT root nodes and one of theirs structural

cuts. Initially, the window contains only one LUT. The win-

dowing algorithm extends the window by including adjacent

LUTs, that is, LUTs that are fan-ins or fan-outs of the LUT(s)

currently included in the window. When deciding which neigh-

boring LUTs should be added, priority is given to the LUT that

increases the size of the window least, because such windows

have a higher optimization potential. Figure 2 shows the win-

dow selection process for a simple mapped AIG.

We do not limit the number of LUTs contained in the win-

dow but limit the number of AIG nodes. This is because each

AIG node adds one SAT solver variable and one input to the

cardinality constraint. Therefore, controlling the number of

AIG nodes in the window is important for ensuring the scal-

ability of the method.

Although our current implementation scales up to 128 AIG

nodes, it was found experimentally that a good tradeoff be-

tween runtime and quality is achieved for windows containing

up to 32 nodes. Smaller windows often do not lead to much im-

provement, while larger windows are better but are more likely

to timeout.

A computed window is represented as an ordered set of in-

ternal AIG nodes included in the window. The window leaves

(the nodes not included, having at least one fan-out that is in-

cluded) and window roots (the nodes included, having at least

one fan-out that is not included) are computed easily. These

two sets are used for CNF construction described in the next

subsection.

This algorithm, when applied to different nodes, can result

in identical windows. To avoid this, window selection employs

a hash table, which caches windows that have been tried and

did not lead to improvement.

B. CNF encoding

The CNF used to present the set of all possible structural

mappings of the window contains the following variables:

• Variable ni = 1 is used to represent that AIG-node is used

in the mapping.

• Variable cik = 1 is used to represent that cut k of internal

AIG node i is used in the mapping.

The resulting CNF contains four types of constraints:

• If node i is used, one of its cuts is used: ni →
∨

k c
i
k.

• If cut k is used, all cut leaves are used: cik → ∧
l nl.

• The nodes driving the outputs are used:
∧

o no.

• The cardinality constraint
∑

i ni < m holds, where m is

the LUT count of the current mapping in the window.

The window leaves do not have to be represented by SAT

variables because they are always used in the mapping. Thus,

if a cut leaf is a window leaf, its SAT variable is assumed to

have value 1. Similarly, the window roots do not have to be

represented by SAT variables because they are always used in

the mapping. In this case, the third constraint (
∧

o no) is omit-

ted and the respective ni variables in other constraints can be

assumed to have value 1.

The CNF generated for a typical window with 32 AIG nodes

contains roughly a thousand CNF clauses and about half of

them are due to the cardinality constraint.

C. Incremental SAT solving

The computed CNF is loaded into the SAT solver. The cardi-

nality constraint, m, is set to a value that is smaller by one than

the number of LUTs in the window. If such solution is found,

the cardinality constraint is tightened again. A sequence of in-

cremental SAT calls continues until the solver returns UNSAT,

or until a resource limit is reached. The last feasible solution

whose quality is strictly better than that of the initial mapping

is used to update the current mapping of the window.

D. Update LUT Mapping

To enable efficient window selection and updating of the

LUT mapping, the internal nodes of the AIG representing the

subject graph are annotated with their status in the current LUT

mapping. For this, each AIG node used in the mapping is put

in correspondence with a K-feasible cut used to represent this

cut in the current mapping.

When a mapping of the window is updated by the SAT-based

mapper, only the old annotation of the internal nodes of the

window need be invalidated and the new annotation is created

to reflect the update. As a result, the mapping of the subject

graph is valid after each update. Thus, if the computation ex-

ceeds a resource limit, the current mapping can be returned,

resulting in a valid mapping of the original AIG.

6D-1

588

Fig. 2. Window selection in an AIG mapped into 4-LUT and window size limit set to 8 nodes.

E. Handling Delay Constraints

In the case of the LUT count optimization, the mapper fo-

cuses on reducing area without considering delay. If delay con-

straints are given, they could be converted into CNF and solved

as part of the SAT problem [9]. However, in our experience, de-

lay constraints substantially increase CNF size and slow down

the SAT solver. To avoid this problem, one could, for exam-

ple, use the method presented in [10]. In the present paper, a

simpler approach inspired by [8] is used.

The main idea is to interface the SAT solver with a dedicated

timer capable of determining if a mapping found by the solver

is acceptable from the delay point of view. If it does not meet

the timing constraints, the timer produces a critical path, which

is a subset of LUTs used in the mapping that do not meet the

timing. These LUTs are represented by specific SAT variables

having value 1 in the current solution.

The found critical path can be ruled out by generating a

blocking clause, which states that all the SAT variables rep-

resenting LUTs on the critical path, cannot be 1 at the same

time. When this clause is added to the SAT solver, it will guar-

antee that any future mapping generated by the SAT solver as

a valid solution to the problem, does not contain this particular

critical path.

The number of delay-violating critical paths in a small struc-

tural window is usually small and does not exceed 10. The

proposed integration of the SAT solver and the timer quickly

finds a timing-feasible solution, or enumerates mapping con-

taining critical paths, blocks each of them, and concludes that

no feasible solution exists.

IV. EXPERIMENTAL RESULTS

The presented SAT-based remapping is implemented as

command &satlut in ABC [2]. The implementation has been

tested using a suite of EPFL benchmarks [6] mapped into 6-

LUTs. The best area mappings available for these benchmarks

were used as input to &satlut.
Command &satlut was run twice: first with the default set-

tings (-N 32, and -C 100) and second with the high-effort set-

tings (-N 64 and-C 10000), where switches N and C for the

command specify the limit on AIG node count in the window

and the limit on SAT conflicts, respectively. The results pro-

duced were checked for correctness using the combinational

equivalence checker (&cec).

The detailed results are reported in I. The first section of

the table shows the parameters for the area-optimized versions

of the designs available from [7]. The parameters include the

LUT count (column # LUT) and the number of levels (column

Level). The column # Nodes shows the number of nodes

in the underlying AIG representation when the LUT network

in BLIF format is given as input and converted into a mapped

AIG using command &get -m.

The second section of Table I presents an evaluation of ap-

plying &satlut with default settings in terms of LUT count (col-

umn # LUT), the number of levels (column # Level), and the

runtime in seconds (column Time, s). The third section of the

table shows results using high-effort settings. At the bottom,

reduction ratios relative to the original mapping are given; they

were calculated using the geometric mean.

The delay limit imposed for each example in the experi-

ments was the delay of the original LUT mapping. The ta-

ble shows that &satlut reduces both area and delay. It is re-

markable that an average area reduction of 3.5% is achieved

with the default settings in a very short time. For several arith-

metic benchmarks, the area reduction is very substantial: div

(9.5%), log2 (7.5%), mult (11.7%), square (11.3%). We spec-

ulate that the large improvements are possible because these

benchmarks have regular circuit structures, which can mislead

area-recovery heuristics used in the structural LUT mapper.

The high-effort settings lead to even better results, but re-

quire substantially longer runtime. On some benchmarks, the

high-effort results are worse than those produced by the default

6D-1

589

TABLE I

THE RESULTS OF APPLYING &satlut TO EPFL BENCHMARKS MAPPED INTO 6-LUTS FOR AREA.

Area-optimized statistics &satlut -N 32 -C 100 &satlut -N 64 -C 10000

Design # Nodes # LUT # Level # LUT # Level Time, s # LUT # Level Time, s

adder 1981 201 73 201 73 0.05 201 73 0.11

arbiter* 1542 429 24 418 24 0.12 413 23 21.97

barrel 3840 512 4 512 4 0.08 512 4 0.25

cavlc 951 107 6 106 6 0.03 106 6 1.10

ctrl 169 28 2 28 2 0.01 28 2 0.01

dec 1072 272 2 272 2 0.02 272 2 0.02

div* 37378 3813 1542 3454 1211 1.03 3435 1217 6.07

i2c 1114 215 7 213 6 0.04 213 6 0.51

int2float 255 34 4 34 4 0.02 34 4 0.19

log2 * 46748 7344 142 6796 126 2.87 6633 121 284.48

max 3108 532 192 528 190 0.38 528 190 103.81

mem ctrl* 10680 2125 23 2106 22 0.62 2103 23 87.43

mult * 54684 5681 120 5019 80 1.43 4923 90 11.32

priority 492 118 27 114 26 0.12 114 26 31.15

router 111 26 6 26 6 0.02 26 6 2.83

sin* 10209 1347 62 1285 55 0.42 1242 53 59.98

sqrt* 38306 3286 1180 3209 1116 0.75 3202 1109 3.41

square* 36468 3798 116 3371 88 1.16 3270 86 6.80

voter* 25699 1521 18 1395 17 0.39 1354 17 1.70

geomean: 1.000 1.000 0.965 0.923 1.000 0.957 0.924 17.854
geomean*: 1.000 1.000 0.934 0.864 1.000 0.918 0.865 23.244

settings. This is because (1) when looking at a larger window,

it is often harder to find a feasible re-mapping even when the

conflict limit is higher, (2) both algorithms are greedy, that is,

accept improvements as they appear, which may preclude other

optimization opportunities later on.

A delay improvement was achieved in most examples be-

cause the original mapping was done just for area.

After removing 10 smaller examples whose area did not

change or changed by less than 5 LUTs (because they were

likely near minimum already), we are left with 9 examples

marked with an asterisk in the table. For this subset, the de-

fault settings improve area and delay by 7.6% and 13%, re-

spectively, while the high-effort settings improve by 8.2% and

13.5%, respectively. These ratios are listed on the Geomean*

row in Table I.

Similarly, Table II lists results for delay-optimized versions

of the EPFL benchmarks. In this case, &satlut performed only

area-recovery while constraining the delay to not exceed the

original maximum delay for each testcase. More area would be

saved if the engine considered the slack on near-critical paths.

However, the engine is configured to not increase the delay on

any path without using the slack.

V. CONCLUSIONS AND FUTURE WORK

The paper describes a fast SAT-based engine for recover-

ing area after AIGs have been mapped into K-input LUTs.

The method is purely structural and does not exploit functional

properties of the design. However, using the default settings,

even on examples that have been mapped already for minimum

area using state-of-the-art mapping, area and delay are further

reduced while runtime consumes only a few seconds. Substan-

tial reductions in area are surprising and indicate that current

area recovery heuristics are relatively weak and sub-optimal

for some circuit types.

The engine, &satlut, can optimize area under delay-

constraints. Delay constraints are not encoded in the CNF, as

in past work [9]. Instead, the SAT solver is interfaced with a

dedicated timing engine, which repeatedly detects timing vi-

olations on the critical paths and converts them into blocking

clauses that are added to the SAT solver.

Currently, we use this SAT-based area recovery re-mapper as

a post-processing step after a mainstream structural mapper. In

the future, SAT-based mapping may become an integrated part

of main-stream mappers, replacing complicated, error-prone,

and often contradictory heuristics used to recover area under

delay constraints. This integration may lead to mappers that

are faster and produce better results. A conceptually similar

approach [9][10] was used to find detailed placement, where

a SAT-based placer provided improved runtime and quality of

results, compared to previous methods based on simulated an-

nealing.

To our knowledge, the proposed engine is the first that can

find exact minimum-area solutions for non-trivial multi-input

and multi-output AIGs, given that the AIG entirely covered by

a window. Our experiments indicate that, given state-of-the-art

SAT solvers and CNF encoding, exact solutions to structural

mapping can be found for relatively small netlists composed of

10-20 LUTs.

Future work will proceed in the following directions:

• Further improving CNF representation of cardinality con-

straints. The motivation is that these constraints take about

6D-1

590

TABLE II

THE RESULTS OF APPLYING &satlut TO EPFL BENCHMARKS MAPPED INTO 6-LUTS FOR DELAY.

Area-optimized statistics &satlut -N 32 -C 100 &satlut -N 64 -C 10000

Design # Nodes # LUT # Level # LUT # Level Time, s # LUT # Level Time, s

adder 2839 419 6 410 6 0.14 415 6 1.86

arbiter * 1834 542 6 533 6 0.13 533 6 2.67

barrel 3840 512 4 512 4 0.09 512 4 0.29

cavlc 956 120 4 119 4 0.03 115 4 2.87

ctrl 169 28 2 28 2 0.01 28 2 0.01

dec 1072 272 2 272 2 0.01 272 2 0.02

div * 74605 14576 238 14530 238 4.42 14553 238 18.55

i2c 1137 234 3 230 3 0.07 229 3 1.78

int2float 261 44 3 41 3 0.03 41 3 1.89

log2 * 57309 9275 55 9140 55 4.25 9221 55 33.27

max 4504 899 10 893 10 0.31 882 10 116.39

mem ctrl* 10874 2234 6 2215 6 0.59 2216 6 16.13

mult * 54813 7095 29 6951 29 4.87 6944 29 8.57

priority 568 158 4 156 4 0.16 157 4 34.53

router 110 30 4 30 4 0.05 30 4 1.74

sin * 11087 1835 30 1801 30 0.65 1803 30 4.36

sqrt * 62832 11745 254 11711 254 3.36 11687 254 8.63

square * 41891 4201 11 4094 11 2.38 4036 11 8.09

voter * 26500 1515 12 1501 12 0.63 1469 12 2.23

geomean: 1.000 1.000 0.987 1.000 1.000 0.983 1.000 11.844
geomean*: 1.000 1.000 0.987 1.000 1.000 0.984 1.000 5.737

50% of the clauses in a typical SAT instance. As a result,

any reduction in their number translates into increased

scalability of the mapper.

• Extending SAT-based mapping to work for standard cells.

A preliminary implementation confirmed that the ap-

proach is practical and leads to area savings.

• Creating a hybrid structural/functional SAT-based opti-

mization mapping engine, which exploits both the effi-

cient structural solution of the covering problem and the

functional nature of the underlying Boolean network.

ACKNOWLEDGMENTS

This work was partly supported by NSF/NSA grant “En-

hanced equivalence checking in cryptoanalytic applications” at

University of California, Berkeley. We thank Jie-Hong Roland

Jiang for discussions.

REFERENCES

[1] R. Asin, R. Nieuwenhuis, A. Oliveras, and E. Rodriguez-Carbonell, “Car-

dinality networks and their applications”, Proc. SAT09, Springer, LNCS

5584, pp. 167-180.

[2] Berkeley Logic Synthesis and Verification Group. ABC: A System for

Sequential Synthesis and Verification.

[3] M. Codish and M. Zazon-Ivry, “Pairwise cardinality networks”, Proc.
LPAR10, Springer, LNCS 6355, pp. 154-172.

[4] N. Een and N. Sorensson, “An extensible SAT-solver”, Proc. SAT03,

LNCS 2919, pp. 502-518.

[5] N. Een and N. Srensson, “Translating pseudo-Boolean constraints into

SAT”, Journal of SAT, Vol. 2, 2006, pp. 1-26.

[6] EPFL Benchmarks. http://lsi.epfl.ch/benchmarks

[7] S. Safarpour, A. Veneris, G. Baeckler, and R. Yuan. “Efficient SAT-based

Boolean matching for FPGA technology mapping.” Proceedings of the
43rd annual Design Automation Conference (DAC ’06).

[8] V. Ganesh, C. W. ODonnell, M. Soos, S. Devadas, M. C. Rinard, and A.

Solar-Lezama “Lynx: A programmatic SAT solver for the RNA-folding

problem”, Proc. SAT12, LNCS 7317, pp. 143-156.

[9] A. Mihal and S. Teig, “A constraint satisfaction approach for pro-

grammable logic detailed placement”, Proc. SAT13, LNCS 7962, pp.

208223.

[10] A. Mihal, “A difference logic formulation and SMT solver for timing-

driven placement”, Proc. SMT13.

[11] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton, “Combinational

and sequential mapping with priority cuts”, Proc. ICCAD ’07, pp. 354-

361.

[12] A. Mishchenko, R. Brayton, J.-H. R. Jiang, and S. Jang. “Scalable don’t-

care-based logic optimization and resynthesis”, ACM TRETS, Vol. 4(4),

April 2011, Article 34.

[13] A. Mishchenko, R. Brayton, T. Besson, S. Govindarajan, H. Arts, and P.

van Besouw, “Versatile SAT-based remapping for standard cells”, Proc.
IWLS’16.

[14] I. Parberry, “The pairwise sorting network”, Parallel Processing Letters,

2 (2, 3), 1992, pp. 205211.

[15] A. Mishchenko, R. Brayton, W.Feng, and J. Greene. 2015. “Technol-

ogy Mapping into General Programmable Cells.” Proceedings of the 2015
ACM/SIGDA International Symposium on Field-Programmable Gate Ar-
rays (FPGA ’15)

6D-1

591

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

